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Abstract. The increasing amount of available molecular data has enabled the reconstruction of genome-scale

metabolic networks of numerous living organisms. A thorough understanding of these complex networks requires

the use of efficient computational and mathematical approaches. In this review, we present the key methods

largely used to model and analyze metabolic networks. We make focus on constraint-based modeling which

describes the solution space containing all the feasible metabolic behaviors of a living organism under steady-state

conditions. The properties of this flux space can mainly be investigated either by optimization-based approaches

or by pathway-based network analysis.
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1 Introduction

The impressive advances in molecular biology stimulate growing interest in the understanding of
living organisms at the system level, complementing efforts of the reductionist approach that has
predominated in molecular biology for the last century. The main objective of such an integrative
paradigm is to link the behavior of living matter to the structure and dynamics of the system,
resulting in a much better understanding of biological systems and efficient engineering and
design of strains that are more suitable for chemical production (Bro et al., 2006).

The operation of a living organism depends on its ability to acquire nutrients from the envi-
ronment and transform them to the necessary molecules. Such transformations are performed
by metabolic reactions. A metabolic reaction, generally speaking, refers to a chemical process
that takes place in living organisms, which allows them to feed, evolve, and reproduce (Fell,
2000). Metabolic reactions contribute to many biological functions, including the degradation
of chemical compounds for the creation of energy or the assembly of cellular constituents. Dur-
ing a metabolic reaction, the compounds that will react are called substrates. The latter will be
converted into different molecules called products as a result of the reaction. The substrates and
the products of the considered metabolic reactions are called metabolites. The stoichiometric
coefficient of a metabolite in a reaction is the number of molecules of that metabolite used in the
reaction. Metabolites are in general transformed step-by-step to other molecules by a sequence
of reactions. This set of interconnected reactions is commonly called a metabolic network.
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The enormous amount of molecular data has allowed a rapid reconstruction of a growing num-
ber of genome-scale metabolic networks. These large networks have been known to be highly
complex. Accordingly, the need for rigorous mathematical and computational methods which
focus on the systemic properties of these complex metabolic networks is becoming increasingly
pressing. Diverse methods have been proposed, including metabolic control, stochastic, cyber-
netic, kinetic and constraint-based analysis (Fell, 1992; Gillespie, 2007; Heinrich and Schuster,
1996; Patnaik, 2001; Price et al., 2004).

Thanks to its ability to analyze genome-scale metabolic networks while using very little in-
formation, constraint-based modeling has recently attracted considerable attention in the lack
of accurate kinetic information. This approach is based on considering a series of constraints, in-
cluding stoichiometric and thermodynamic constraints, that controls the activities of a metabolic
network under steady-state conditions. These constraints limit the range of allowable behaviors
of the metabolic network, each corresponding to a possible metabolic phenotype. The space of
these attainable metabolic behaviors satisfying these constraints is called the steady-state flux
cone.

This review is structured as follows. We start in Section 2 with some mathematical prelimi-
naries about polyhedral cones and linear programming. In Section 3, we give an overview of the
main methods used to model and analyze metabolic networks. We make focus on constraint-
based approaches that use linear constraints such as stoichiometric and thermodynamic con-
straints to define the space of all possible behaviors of a metabolic network at steady state. After
explaining the optimization-based approaches which aim to identify single metabolic behaviors
that optimize a predefined criterion of optimality, we shall address the well-known concept of
elementary modes.

2 Mathematical Preliminaries

In this section, we will give a brief overview of the mathematical concepts that we will be
using throughout this review. We especially recall fundamental concepts of linear algebra and
polyhedral theory. We also present linear programming which provides an efficient way of
searching for optimum solutions of linear programs.

2.1 Polyhedral cones

In the following, we denote by Rn the n-dimensional vector space over R. The superscript “T”
denotes transposition. Given two vectors a, b ∈ Rn, aT b stands for the inner product of a and b.
We denote by Supp(a) the support of a vector a ∈ Rn, i.e., Supp(a) = {i ∈ {1, . . . , n} | ai ̸= 0}.
A vector a ∈ Rn is a conic combination of the vectors x1, . . . , xp ∈ Rn if

a =

p∑
i=1

λix
i, for some λ1, . . . , λp ≥ 0.

For a set X ⊆ Rn, X ̸= ∅, the conic hull of X, denoted by cone(X), is the set of all conic
combinations of finitely many vectors of X.

A non-empty subset C ⊆ Rn is called a (convex) cone if λx + µy ∈ C, for all x, y ∈ C
and λ, µ ≥ 0. A cone C is polyhedral, if C is the set of solutions of a finite system of linear
homogeneous inequalities, i.e., C = {x ∈ Rn | Ax ≥ 0}, for some real matrix A ∈ Rm×n. If this
is the case, the lineality space of C, denoted by lin.space(C), is defined by

lin.space(C) = {x ∈ Rn | Ax = 0}.

For any a ∈ Rn \ {0}, the vector subspace H = {x ∈ Rn | aTx = 0} is called a hyperplane.
H divides the vector space Rn into two halfspaces: H+ = {x ∈ Rn | aTx ≥ 0} and H− = {x ∈
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Rn | aTx ≤ 0}. Therefore, a cone C = {x ∈ Rn | Ax ≥ 0} can be considered as the intersection
of finitely many halfspaces.

A cone C is finitely generated if there exist g1, . . . , gs ∈ Rn such that C = cone{g1, . . . , gs} =
{λ1g

1 + . . .+ λsg
s | λ1, . . . , λs ≥ 0}. If this is the case, the vectors gi for i = 1, . . . , s are called

generating vectors of the cone C. The set B = {g1, . . . , gs} is called a minimal set of generating
vectors if no proper subset of B generates the cone C.

A famous theorem of Farkas-Minkowski-Weyl (see e.g., (Schrijver, 1986)) states that a con-
vex cone is polyhedral if and only if it is finitely generated. This theorem asserts that every
cone admits two types of representations, either as the solution set of a finite system of linear
homogeneous inequalities or as the conic hull of a finite set of generators. These are commonly
called external and internal representation, respectively. For the rest of this review, we will
consider only polyhedral cones and simply use the term cone.

Any non-zero element r ∈ C is called a ray of C. Two rays r and r′ are equivalent if r = λr′,
for some λ > 0. If this is the case, we write r ∼= r′. A ray r is extreme if there do not exist rays
r1, r2 ∈ C, r1 ̸∼= r2, such that r = r1 + r2. A cone C is called pointed if C = {x ∈ Rn | Ax ≥ 0}
for some A ∈ Rm×n with rank(A) = n, or equivalently, lin.space(C) = {0}.

2.2 Linear programming

Linear programming (LP) refers to maximizing or minimizing any linear function, known as the
objective function, subject to linear inequalities. Given a matrix A ∈ Rm×n, a vector b ∈ Rm

and a vector c ∈ Rn, the corresponding LP problem, is denoted by

max{cTx : Ax ≤ b}.

Each of the linear inequalities Ai∗x ≤ bi for i = 1, . . . ,m is called a linear constraint. A vector
x∗ ∈ Rn is a feasible solution if x∗ satisfies all the linear constraints, i.e., Ax∗ ≤ b. If in addition,
cTx∗ ≥ cTx for all feasible solutions x, x∗ is called an optimal solution. The feasible region is
the set of all feasible solutions. A linear program is feasible if its feasible region is not empty,
otherwise it is called infeasible. If some variables are required to be integers but others can be
real, the considered linear program is referred to as a mixed integer linear programming (MILP)
problem. One can use the simplex method to solve a linear program. This approach lists adjacent
vertices of the feasible region, such that the objective function improves or remains unchanged
at each new vertex. Another effective polynomial time algorithm is the method interior point.
The reader concerned could refer to (Schrijver, 1986).

3 Metabolic network analysis

3.1 Steady-state flux cone

The difference between the rate of formation and consumption of a given metabolite is, according
to the kinetic theory, equal to the change over time in its concentration. The behavior of a
metabolic network can then be captured mathematically as a system of ordinary differential
equations (Heinrich and Schuster, 1996). A compact expression of this system of equations is

dx

dt
= Sv, (1)

where S is the stoichiometric matrix, x denotes the m−dimensional vector of internal metabo-
lite concentrations and v stands for the flux distribution with elements which correspond to the
n fluxes through reactions. The flux vector v is actually a nonlinear functions of metabolite
concentrations x as well as of certain kinetic parameters. Except for very simple cases, using
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suitable nonlinear solvers, the constraint system (1) can be solved numerically but not analyti-
cally. Nevertheless, if we do not consider metabolite concentrations, then the constraint system
(1) is linear in the fluxes through reactions.

Determination of steady states plays a key role in metabolic networks analysis (Schuster and Hilgetag,
1994). Under steady-state conditions, the change in the concentration of a compound over time
across all reactions within the system becomes zero. This hypothesis holds for most metabolic
reactions since they are usually much faster than environmental variations (Gagneur and Klamt,
2004; Varma and Palsson, 1994). The steady-state assumption is expressed by the following flux
balance equation

Sv = 0.

This equation describes the stoichiometric constraints which state that, for any metabolite in
the considered network, the total consumption rate must be equal to the total formation rate.

Stoichiometric constraints are required for characterizing metabolic network behavior, but
far from sufficient. These constraints allow for a wide variety of potential steady-state flux
distributions, namely all flux vectors that form the null space of the stoichiometric matrix. To
reduce the range of possible flux distributions, further constraints imposed by thermodynamic
considerations are used. Indeed, since each irreversible reaction can operate only in the forward
direction, fluxes through irreversible reactions must be bigger than or equal to zero. This is
expressed by the following linear inequalities

vi ≥ 0, for all i ∈ Irr , (2)

where Irr is the set of irreversible reactions in the considered metabolic network.
According to (Pfeiffer et al., 1999), a series of reactions forms a functionally coherent set

in metabolism if the flux vector v carried out by these reactions fulfills the stoichiometric and
thermodynamic constraints, i.e., v satisfies the following system of linear constraints

Sv = 0, vi ≥ 0, for all i ∈ Irr , (3)

where the number of constraints (m+ |Irr|) is always significantly smaller than the number n of
unknown rates. This set of linear constraints is, therefore, usually undetermined. Furthermore,
due to the linear inequalities (2), the constraint system (3) can not be solved using standard linear
algebra. It is shown in polyhedral theory that the solutions of the mathematical problem (3)
define in the flux space a polyhedral cone. Accordingly, the set of all possible flux distributions
over the network at steady state, defines a polyhedral cone

C = {v ∈ Rn | Sv = 0, vi ≥ 0, for all i ∈ Irr}, (4)

which is called the steady-state flux cone (Clarke, 1980).
Given that the flux cone typically contains infinitely many potential steady-state flux dis-

tributions, it is important to figure out which of these feasible flux distributions the metabolic
network under consideration currently displays. Constraint-based methods have attempted to
analyze metabolic networks using several mathematical and computational tools (linear algebra,
polyhedral theory, and linear programming, to name but a few). There are two main paradigms
to analyze a metabolic network: searching for optimal metabolic behaviors using optimization-
based approaches, or assessing the properties of the whole steady-state flux cone by means of
pathway-based network analysis. We will give in the following an overview of these two types of
constraint-based modeling.

3.2 Optimization-based approaches

Optimization-based approaches consider that metabolic networks function optimally, driven by
an objective. To apply such methods, we must first define a most probable physiologically
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relevant objective of a living system. This is interesting because it may enable us to identify
rules regulating the activity of a metabolic network under various environmental conditions.
These governing rules are important not only for improving our understanding of the living
strains, but also for engineering and designing strains that are more suitable for the production
of chemicals (Bro et al., 2006; Burgard and Maranas, 2001).

A widely used approach defines an objective function and seeks for its maximal value within
the feasible region to determine an optimal flux distribution (Kauffman et al., 2004; Lee et al.,
2006). This method, called flux balance analysis (FBA), employs an optimization strategy
which uses, in addition to the stoichiometric and thermodynamic constraints, flux capacity
constraints that impose bounds on reactions fluxes. Other physicochemical constraints can also
be considered to further shrink the space of all feasible flux distributions. All these additional
constraints are important for the use of optimization techniques because the feasible domain
must be bounded in the direction of the objective function. More formally, given that the
objective function is linear, FBA uses the following linear programming problem:

max cT v
subject to:
Sv = 0,
li ≤ vi ≤ ui for all i ∈ {1, . . . , n},

(5)

where c denotes the vector defining the objective function which is linear in the fluxes of reac-
tions (Ramakrishna et al., 2001). The bounds li and ui are the minimum and maximum flux ca-
pacities of reactions i ∈ {1, . . . , n}. Particularly, li = 0 for every irreversible reaction i. By mod-
ifying the vector c in the linear problem (5), various objective functions may be evaluated, each
capturing specific details regarding the laws controlling metabolic networks. Most optimization-
based methods presume that the maximization of biomass production (growth) is a well-suitable
objective function for optimal operation of a metabolic network (Varma and Palsson, 1994;
Edwards and Palsson, 2000). Indeed, it is commonly assumed that microorganisms behave in
such a way that their metabolic networks allow the most effective resource transfer to generate
more cells. This basic theory of optimization has been largely used in many experiments, such as
predicting the optimum performance of a metabolic network under a variety of growth conditions,
investigating gene essentiality, and determining targets for metabolic engineering (Bro et al.,
2006; Edwards et al., 2001; Pál et al., 2006).

Certain studies pointed out that some living organisms may be driven by different objectives
(ATP production, nutrient uptake, and overall flux, to name but a few) depending on the envi-
ronmental conditions (Edward and Palsson, 1998). Accordingly, no particular objective function
could completely capture the optimal functioning of metabolic networks under all environmental
circumstances. Checking whether a hypothesized objective function is consistent with experi-
mental flux data is consequently a mandatory task. A recent work systematically assessed the
relevance of eleven chosen objective functions to predict rates in E. coli in six different growth
mediums (Schuetz et al., 2007). Certain methods, namely ObjFind and invFBA, propose to infer
the objective functions that fit better with observed experimental data (Burgard and Maranas,
2003; Zhao et al., 2016).

On the other hand, when studying the consequences of gene deletion on the metabolic ca-
pabilities of a mutant strain, the objectives used for wild-type systems may not be accurate to
capture the metabolic behavior of a knocked-out living organism. The later is assumed by a
recent approach, called minimization of metabolic adjustment (MOMA), to display a flux dis-
tribution closest to the optimal flux distribution prior to the gene deletion (Segrè et al., 2002).
To achieve this, MOMA determines a flux vector with the smallest euclidean distance to the
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optimal wild-type flux vector by solving the following quadratic program:

min (v − w)T (v − w)
subject to:
Sv = 0,
li ≤ vi ≤ ui for all i ∈ {1, . . . , n},
vj = 0, for all j ∈ A,

where w denotes the wild-type flux distribution and A stands for the set of reactions corre-
sponding to the deleted genes. Alternatively, regulatory on-off minimization (ROOM) assumes
that the metabolic behavior of a mutant strain corresponds to a flux distribution with a mixed
integer linear programming (MILP) problem:

min
∑n

i=1 ciyi
subject to:
Sv = 0,
vi − yi(ui − wu

i ) ≤ wu
i for all i ∈ {1, . . . , n},

vi − yi(li − wl
i) ≥ wl

i for all i ∈ {1, . . . , n},
vj = 0, for all j ∈ A,
yi ∈ {0, 1},

where ci is the cost for a change in the flux through reaction i, and for each reaction i ∈
{1, . . . , n}, yi = 1 if there is a significant flux change in vi, i.e., vi /∈ [wl

i, w
u
i ] with [wl, wu] being

an interval around the wild-type flux distribution w, and yi = 0 otherwise.
Several other optimization-based methods have been proposed to analyze metabolic net-

works including automated curation of metabolic reconstructions (Kumar et al., 2007), recov-
ering metabolic pathways via optimization (Beasley and Planes, 2007), analysis of gene es-
sentiality (Burgard et al., 2001; Almaas et al., 2005; Pál et al., 2006) and metabolic engineer-
ing (Burgard and Maranas, 2001; Bro et al., 2006). Although these methods have proven ef-
fective in evaluating metabolic capabilities for many microorganisms, their findings strongly
depend on the definition of the objective function. In addition, these approaches assume that
metabolic systems operate in accordance with a single optimization rule. It has been shown,
however, that a microorganism could be driven by different optimization objectives depending
on the growth conditions (Schuetz et al., 2007). Furthermore, since an optimal solution with
respect to a suitable objective function need not be unique, these optimization-based techniques
often return a randomly selected flux distribution from the optimal flux space. This space is,
in general, an infinite convex set and requires an adequate description. For the above reasons,
a good alternative is to apply pathway-based network analysis to assess the properties of the
whole steady-state flux cone.

3.3 Pathway-based Network Analysis

Pathway-based network analysis (Klamt and Stelling, 2003; Papin et al., 2003; Schilling et al.,
2000b) has been become an indispensable approach in computational biology. This analysis
makes a focus on describing the infinite flux cone C (defined in equation (4)) using a finite set
of generators. It is important to distinguish whether the flux cone is pointed or not. The flux
cone is by definition pointed if its lineality space

lin.space(C) = {v ∈ C | vi = 0, for all i ∈ Irr} (6)

is reduced to the origin, i.e., no trivial steady-state flux distribution can use only reversible
reactions. Specifically, if all reactions are irreversible, i.e., Irr = {1, . . . , n}, then lin.space(C) =
{0} and so the flux cone is pointed. In this case, the flux cone is generated by the unique and
minimal set of its extreme rays. The case becomes more complex in the presence of reversible
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reactions. In this case, the flux cone may be non-pointed and has no longer a unique and minimal
description by its extreme rays. To deal with this situation, a constraint- based approach has
been proposed to investigate the properties of the steady-state flux cone by means of sets of
irreversible reactions (Larhlimi and Bockmayr, 2009). Other methods suggest re-configuring
the metabolic network in order to render the flux cone pointed (Clarke, 1980; Schilling et al.,
2000a; Larhlimi and Bockmayr, 2008).

Alternatively, a description of the flux cone without any reconfiguration has been proposed,
using elementary modes (Schuster and Hilgetag, 1994; Schuster et al., 2002). An elementary
mode (EM) is a steady-state flux vector using a minimal set of reactions. From a biological point
of view, each EM uses a minimum set of reactions to convert a set of substrates into products.
Because reactions are catalyzed by enzymes, each EM corresponds to a minimum set of enzymes
which must be expressed by genes. This property is important because a living organism’s effort
to carry out a metabolic pathway increases with the amount of enzymes expressed (Papin et al.,
2002).

More formally, a flux vector e ∈ C \ {0} is an elementary mode if, and only if, there do not
exist vectors e′ ∈ C and e′′ ∈ C such that

e = λ1e
′ + λ2e

′′ for some λ1, λ2 > 0,

and

Supp(e′) ( Supp(e) and Supp(e′′) ( Supp(e).

In addition, elementary modes form a convex basis of the steady-state flux cone. Each steady-
state flux distribution can be considered as a non-negative linear combination of elementary
modes (Schuster et al., 2002). In other words, if e1, . . . , ep are the elementary modes of the flux
cone C, each feasible flux vector v ∈ C is a non-negative linear combination of e1, . . . , ep

v =

p∑
k=1

λke
k for some λk ≥ 0.

Tab. 1 lists the main practical applications of elementary modes. For instance, they are
useful for studying reaction deletions, i.e., the removal of some reactions from the metabolic
network. Indeed, if a set of reactions are removed from a metabolic network, all elementary
modes not using these reactions form the complete set of elementary modes in the modified
network. This property is of great interest in the calculation of minimal cut sets to identify
reactions that must be removed to make a target reaction inactive (Klamt, 2006). Elementary
modes can also be used to assess the robustness of a metabolic network against mutations and
environmental perturbations (Wilhelm et al., 2004).

Table 1: Principal applications of elementary modes to analyze metabolic network properties.

Application Reference
Correlated reactions (Pfeiffer et al., 1999)

Mutant viability (Cakir et al., 2004; Stelling et al., 2002)

Control-effective flux analysis (Cakir et al., 2004, 2007; Stelling et al., 2002)

Pathways with maximal yields (Krömer et al., 2006; Schuster et al., 2000; Schwender et al., 2004)

Thermodynamically infeasible cycles (Gagneur and Klamt, 2004)

Minimal cut sets (Klamt, 2006)

Dynamical capabilities of a metabolic system (Steuer et al., 2007)

Network robustness (Wilhelm et al., 2004)
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4 Conclusion

In this review, we show the crucial role of mathematical and computational methods to achieve
a deep understanding of living organisms. In particular, constraint-based modeling shows large
applicability in the study of complex metabolic networks. However, several challenges still
remain, notably in providing efficient methods that scale well for large genome-scale models
of complex microorganisms. From a computational point of view, calculating a description
of the flux cone corresponds to calculating a convex basis. This computation, which may be
inefficient for large-scale metabolic networks, is still a challenging task. Further advancements in
metabolic network modeling (e.g., dividing the network into simpler sub-networks, considering
reaction dependencies) and in algorithm implementation may enhance the current methods.

Constraint-based metabolic network analysis assumes that living organisms operate under
steady-state conditions and so no predictions about the dynamic behavior of the system can
be performed. However, the insight gained about the structural properties of metabolism can
serve as a basis for other studies. In particular, the incorporation of regulatory constraints and
kinetic information would expand the scope of this approach and would provide useful modeling
and efficient tools for genome-scale metabolic network analysis..
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